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The analysis and optimization strategy
of network failure recovery

Changtian Ying1, 2, Weiqing Wang1, Jiong Yu2,
Hong Jiang2, Lei Qi2

Abstract. In the traditional network failure mechanism, the programmer takes the respon-
sibility to select the network checkpoints, which may lead to the problem of unavailable service
and much more recovery time. To address this issue, we first analyzed the architecture of network
failure in this paper, established the fault tolerance model on the basis of network characteristics,
and then proposed the optimization strategy for network failure including the checkpoint algorithm
and the recovery algorithm. The checkpoint algorithm chose the appropriate checkpoints based on
the analysis of the network, and the recovery algorithm took advantage of the latest checkpoints
to recover the lost data. Finally, we conducted the experiments to evaluate, and both of the two
datasets had the less recovery time and better recovery ratio. The experiment results verified the
validity of the failure recovery strategy.
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1. Introduction

The past few years have seen a major change in computing systems, as growing
data volumes and stalling processor speeds require more and more applications to
scale out to distributed systems. To face the challenges brought by the big data [1,
2], data processing technology has come under heated discussion among domestic
scholars in recent years. Spark has won more and more recognition and support in
the new generation of large data processing framework. It is a general-purpose high-
performance parallel computing framework. Spark uses flexible distributed datasets
that are called RDD (resilient distributed datasets) as the data structure. If a
partition of an RDD is lost, Spark read the checkpoint data, and uses the linage to
re-compute that partition.

The checkpoint/recovery strategy is fault-tolerant technology, which has been
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widely used in cluster computing. Checkpoint is a common traditional strategy
in the domestic and foreign research [3]. The classifications of checkpoint technol-
ogy are the system level, the application level and the user level [4]. Literature [5]
analyzed the characteristics and advantages of different examination method, and
proposed an application level check pointing technology. And another method is
presented to implement a system level checkpoint [6]. This literature proposed au-
tomatic fault tolerance technology based on high performance computing system,
which can complete the automatic check pointing/recovery [7]. Literature [8] pro-
posed checkpoint/restore library, which could support the different ways of preserv-
ing the checkpoint data in the memory. Literature [9] used mixed strategy to fulfill
incremental checkpoint, thereby reducing the amount of checkpoint data. Fault tol-
erance strategy of literature [10] used multilevel storage and encoding redundancy
checkpoints, so as to reduce the fault tolerance overhead.

However, in the Spark checkpoint mechanism, the programmers make the deci-
sion for selecting the object and time of checkpoints. The checkpoint is set up only
when the checkpoint instruction is executed. This implementation increases the un-
certainty of checkpoint strategy, and it is much difficult to maximize the checkpoint
performance. If the checkpoint strategy is unsuitable, it may not only reduce the
application efficiency, but also increase the risk of application exception. Therefore,
if the failure optimization algorithm can efficiently implemented, it can ease the
burden of programmers, and improve system efficiency and availability.

In this paper, we have conducted a sophisticated theoretical and technical study
on checkpoint technology. First we established the task scheduling and recovery effi-
ciency model, then analyzed relevant factors and established the RDD weight model.
Then we proposed optimization strategy to max-relieve checkpoint bottleneck and
optimize the performance. The experiments verified the effectiveness of the strategy.

2. Problem analysis

Due to the lazy scheduling mechanism, the task is compiled into multiple DAGs
when performs action. And each RDD is divided into several partitions to be calcu-
lated by the cluster nodes.

Definition 1 - Partition failure rate. RDD partitions are computed in parallel.
When considering the hardware failure, partition failure rate is determined by worker
failure rate. If the worker failure rate of wm is wfm, then the failure rate of the
partition PTijk is denoted as

FRPTijk
= pbijkmwfm . (1)

Definition 2 - RDD failure rate. If the RDD partition is unavailable, the entire
RDD cannot be used. So the failure rate of RDDi is defined as

FRRDDij
= max(FRPTij1

, FRPTij2
, FRPTij3

, · · · , FRPTijk
) . (2)



THE ANALYSIS AND OPTIMIZATION STRATEGY 53

Definition 3 - Task failure rate. When the task is executed, it is compiled into a
RDD DAG, and the failure rate of the task is denoted as

FRTaski
= 1−

m∏
j=1

(1− FRRDDij
) . (3)

Definition 4 - Partition recovery cost. Recovering of missing partition needs the
parent partitions and checkpoints. If the ancestor PTijp has been set as checkpoint,
then the recovery cost of the partition PTijk can be defined as

R(PTijk) = αi + read(PTij(k−1)) + proc(PTijk) ,

R(PTij(k−1)) = αi + read(PTij(k−2)) + proc(PTij(k−1)) ,

R(PTij(p+1)) = αi + read(PTijp) + proc(PTij(p+1)) .

Assume TPTijk
as the time cost of PTijk and TPTijk

= read(PTijk)+proc(PTijk).
Then

R(PTijk) = αi +

k∑
l=p

TPTijk
. (4)

Here, αi denotes the fault detection overhead. If the checkpoints are not set, all
RDDs are calculated from the beginning.

Definition 5 - RDD recovery cost. Suppose the checkpoints as the set Ci =
(ci1, ci2, ..., cip)}, where Ci is a subset of Taski, cip is the newest checkpoint, and
RDDik is the kth RDD of Taski. The worker is failed while computing RDDij , then
the recovery cost can be denoted as

RRDDij
= αi + read(RDDi(k+1)) + proc(RDDi(k+1)) + read(RDDi(k+2)) +

+ proc(RDDi(k+2)) + · · ·+ read(RDDij) + proc(RDDij) =

= αi + TRDDi(k+1) + TRDDi(k+2) + · · ·+ TRDDij =

= αi +

j∑
q=k+1

TRDDiq . (5)

where αi denotes the fault detection overhead.

RRDDij
= αi +

j∑
q=1

TRDDiq
. (6)

Definition 6 - task recovery cost. In the failure case, the task recovery cost during
the task execution process is the completion overhead for the task, and the overhead
for the lost RDDs to recovery. If the number of failure times is 0, Rtaski

is the
recovery overhead of Taski. If the number of failure times is k, then fault recovery
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overhead is used by the lost RDDs.

Rtaski
=

k∑
j=1

RRDDij
=

k∑
j=1

(αi +

j∑
q=1

TRDDiq
) . (7)

Definition 7 - RDD life cycle. For RDDij , the maximum life cycle is from the
starting time of RDDij to the completion time of task. Denote STRDDij as starting
computing time of RDDij , FTtaski

as the completion time for the task, then the
maximum life cycle of the RDDij can be defined as

maxLCRDDij
= FTtaski

− STRDDij
. (8)

For RDDij , the minimum life cycle is from the start time of RDDij to the last used
completion time of RDDij . Denote UTRDDij

as RDDij of the last used completion
time

minLCRDDij
= UTRDDij

− STRDDij
(9)

So the range of the RDD life cycle is expressed as

minLCRDDij
≤ LCRDDij

≤ maxLCRDDij
. (10)

By analyzing the availability, it is easy to know that the failure probability, the
selection of the checkpoint time and objects are important factors influencing the
recovery efficiency. Suppose the fault probability does not change the situation,
then the recovery overhead of the task R(task) is smaller, the task availability is
greater. Therefore, the goal of automatic checkpoint strategy is to minimize task
recovery overhead while meeting the requirement of system resources. And it can
be formalized as

Object: min(Rtask), s.t.
∑

i∈TasksAim ≤ rm .

3. Optimization strategy

3.1. Relevant proof

Theorem 1. It is difficult to choose proper period time according to the time.
Proof: select the period checkpoint time need considering the user experience

judgment and the prediction task execution time. For the checkpoint time Ti, there
are three kinds of states.

1. Ti is too small, Ti < minTRDD (RDD being the minimum running time). It
may cause frequently storing data to disk and reducing system throughput.

2. Ti is too large, Ti > maxTRDD (RDD maximum running time). The time
interval of the storing data is too long, if the worker power down, it may lead to a
large number of data RDD necessary for recalculation.

3. Ti is moderate, minTRDD < Ti < maxTRDD. The time interval is moderate,
but with the current state of the system, may not be a good fit with the task.

Theorem 2. The long lineage principle. The longer the RDD lineage is, the
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greater its recovery overhead is. And it should be gave higher priority.
Proof: Taski has two RDDs: RDDi(j−1) and RDDij . RDDi(j−1) is father RDD

of RDDij . Suppose the lineage depth of RDDi(j−1) is k, the lineage depth of RDDij

is k+1, then RDDij has a longer lineage. Denote RDDip the latest checkpoint, then
recovery overheads of two RDDs are

RRDDi(j−1)
= αi +

j∑
q=p+1

TRDDiq
,

RRDDij = αi +

(j−1)∑
q=p+1

TRDDiq . (11)

As RRDDij −RRDDi(j−1)
= TRDDij , therefore RRDDij > RRDDi(j−1)

.
That is, the RDD recovery overhead with longer lineage is greater. When the

checkpoint is set, the RDD with long lineage should be selected to reduce the recovery
overhead.

Theorem 3. Wide dependency principle. The recovery overhead of narrow de-
pendency is larger than that of the wide dependency.

Proof: Recovery overhead from the parent RDDi(j−1) to RDDij is

RRDDij
= αi +

m∑
l=p

T (PTijl) . (12)

When the parent data RDDij is fixed, the difference is that the operation is of
wide or narrow dependency. If the operation is narrow dependency and the lth
partition PTijl is lost, only the parent of PTijl is calculated.

RRDDij (narrow) = R(PTijl) = αi + read(PTij(l−1)) + proc(PTijl) . (13)

If the operation is wide dependency and the lth partition PTijl is lost, the par-
tition is calculated by all the parent partitions:

RRDDij (wide) = RRDDij = max(R(PTij1), · · · , R(PTijk) . (14)

Therefore
RRDDij(wide) ≥ RRDDij(narrow) .

We should preferred RDD with wide dependency as checkpoints, thereby reducing
the recovery overhead.

Theorem 4. High computation cost principle. If the RDD with higher computa-
tion cost is not stored, it may lead higher recovery overhead. So it is necessary to
give priority to the RDD with higher cost.

Proof: For Taski, in the case of the same parameters, when the cost of the RDD
calculation is not the same size, the impact on the recovery of the RDD overhead is
different.
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When the restore is required and the latest checkpoint is RDDip, the recovery of
RDDij overhead is

RRDDij
= αi +

j∑
q=1

TRDDiq
= αi +

j−1∑
q=1

TRDDiq
+ TRDDij

. (15)

While the other parameters are fixed, if the computation cost of RDDij is greater,
the recovery overhead is greater. Therefore, RDD with greater computation cost
should be preferred as checkpoint, thereby reducing the recovery overhead.

3.2. RDD weight model

Based on the above analysis, the recovery overhead key factors are: 1) RDD
lineage length, 2) the complexity of operation, 3) RDD computation cost.

Definition 8 - depth of RDD. Depth(RDDij) denotes as the RDD lineage length,
which is the layer number for RDDij in the directed acyclic graph (DAG). Assumed
the first layer RDD, depth is defined as 1, and the depth of the last RDD is the
maximum depth m of directed acyclic graph (DAG).

Assume two RDDix and RDDiy have different depths, the depth as Depth(RDDix),
Depth(RDDiy), respectively. If Depth(RDDix)>Depth(RDDiy), then the lineage of
RDDix is longer than that of RDDiy.

Definition 9 -the operation complexity. RDD operation divides into two kinds,
narrow dependency and wide dependency. Recovery overhead of wide dependency is
larger, and is relevant to the partitions number. Denote the operation complexity as
OCRDDij , and RDDij has k partitions. When the RDDij operation is narrow depen-
dency, the operation complexity is defined as 1. On the contrary, wide dependency
occurs, when the operation complexity is defined as k.

Definition 10 - computation overhead. According to definition, PTijk computa-
tion cost requires a comprehensive assessment of the data acquisition cost, the data
processing cost, and the evaluation of algorithms. It is difficult to predict it. But we
could easily get the start time and completion time of RDDij . So the computation
cost can be expressed as:

CostRDDij = FTRDDij − STRDDij . (16)

Definition 11 - RDD weight. The weight of RDD is expressed as follows:

CRRDDij
= α×DepthRDDij

+ β ×OCRDDij
+ γ × CostRDDij

. (17)

Here, 0 ≤ α, β, γ ≤ 1, and α+ β + γ = 1. When α = 1, the weight is determined
by RDD lineage depth. When β = 1, the key is up to the operation complexity.
When γ = 1, the key is decided by computation overhead.
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4. Optimization processes

Before performing the task, traverse the DAG of the task. Then get the op-
eration and the properties of each RDD. After analyze the DAG and the current
implementation of the progress, calculate the RDD weight.

According to the RDD weight, select the RDDs as checkpoint to perform. Check-
point time began from the first generation of RDD to the latest generation of RDD.
During the task execution, comparison of the new generation of multiple RDD, select
the largest RDD as the checkpoint.

After downtime, the spark performs the recovery operation, and recovers from the
latest checkpoint RDD. The latest checkpoint is read into memory, thereby reducing
the recovery and execution overhead. When a RDD need recover, re-execute the
lineage and recovery through its parent node.

To complete the processing tasks, the recovery strategy steps are:
1) Choose free worker, if the current has no idle worker, waiting for the worker

assignment.
2) Receive a checkpoint sequence.
3) It has been lost RDD sequence.
4) Determine the need to use what RDD by lineage.
5) If the operation is of wide dependency, or lost the RDD all partitions, you

need to read the RDD all partitions to memory.
6) If it is the loss of RDD partition, and the lineage without wide dependency,

only need to read the lost partition checkpoint into memory.
7) Read the checkpoint into memory, and compute by the lineage.

5. Experimental and evaluation

5.1. Experiment environment

This section will be compared and evaluated by experiments, which verify the
validity of the checkpoint automatic selection algorithm and the recovery algorithm.

The experiments perform with a master server and eight computing nodes as the
master and Hadoop namenodes of Spark, and the nodes configuration is shown in
Table 1.

5.2. The optimization strategy

5.2.1. Different failure rate. Figure 1 indicates that the iteration time is 1–10,
when the failure rate is fr = 0.375 and 0.5, the algorithm uses different data sets,
and compared the failure recovery algorithm.

As shown in Fig. 1, with the increase of failure rate, task execution time also
increases. This is because of the failure rate is high, which means the more node
failure. Therefore, in order to restore the RDD, it is need more time overhead to
recalculate the corresponding. Comparison of different data sets, and Web-Google
Wiki-Talk under different algorithms, Wiki-Talk has bigger time overhead. This is
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due to the size difference computation.

Table 1. Configuration parameters

Parameters Values

CPU Intel CORE i7/2.2GHz

RAM 1GB
Hard Disk 200GB/SATA3.0

OS CentOS 6.4
Spark Apache Spark 1.4.1

Hadoop Apache Hadoop 2.6

Scala Scala-2.10.4
JDK OpenJDK 1.8.0 25

Comparing the number of iteration, it can be seen that when the iteration num-
ber is 1, the task execution time of failure recovery algorithm or system recovery
algorithm is basically the same. This is because the check pointing algorithm is set
to complete the checkpoint, so the failure recovery algorithm does not affect task.
And with the increasing in the number of iterations, the execution speed of failure
recovery is obviously better than that of system recovery algorithm. The system
recovery algorithm recomputed RDD from the beginning. Then the bigger the iter-
ation time is, the longer recovery time is. Therefore, if the number of iterations is
small, the user can use the lineage to recover and does not need to set up checkpoints
to improve the efficiency.

5.2.2. Accelerate the recovery ratio. Figure 2 indicates that the algorithm uses
different data sets, the average recovery time and recovery speedup ratio of the
failure recovery algorithm.

Figure 2 shows that the comparison of different iterations, with the increasing in
the number of iterations, the original Spark by lineage to recover the time cost is
larger. When the node fails, it will result in the loss of RDD partitions. Spark task
will perform these tasks concurrent on other machines. The task reread the input
data, and reconstruction RDD based on the lineage. The longer the iteration and
computing time is, the greater recovery time overhead is. Comparing the different
data sets, the recovery of Wiki-Talk speedup more, because it needs more computa-
tion, The execution time is longer, so the overhead of the recovery is larger, and the
recovery cost can be significantly reduced by using checkpoint recovery algorithm.

Then there were compared Fig. 1 and Fig. 2 comprehensively, analyzed task ex-
ecution time, recovery time and recovery speedup ratio. Although the algorithm
may increases the amount of time overhead, compared to the traditional policy un-
certainty and even abnormal risk, the extra overhead is worth it. On the basis of
automatic checkpoint algorithm, failure recovery algorithm considers not only the
RDD lineage length, but also the computation cost and operation complexity. The
greater the weight of RDD is, the higher checkpoint priority is. It will make the task
to minimum the overall computational cost, so as to improve the recovery efficiency
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Fig. 1. Execution time (s) of CR(s): up–fr = 0.375, bottom–fr = 0.5

of tasks. Therefore, checkpoint selection algorithm cannot significantly affect the
performance of the Spark system under the condition of enhancing system stability
and reliability.

6. Conclusion

The traditional network failure recovery strategies set the checkpoints depending
on the experiences of the programmers, which may cause larger execution time and
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Fig. 2. Average recovery efficiency of CR: up–recovery time (s), bottom–accelerate
rate (%)

lower efficiency. To address the issue, we analyzed task execution mechanism, and
established the task execution efficiency model. Then put forward the RDD weight
model, which provided a theoretical basis for the strategy presented. Experiments
were conducted with different data sets and failure rate. And the results demon-
strated that the strategy can improve the recovery efficiency and the utilization of
system resources at the same time. Especially with the rising in large data analy-
sis, network optimization has become increasingly prominent, and network failure
recovery is one of the key problems to be addressed.
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However, due to the limited capacities, the research should further be conducted
in the future. Our work will mainly focus in the following aspects:

(1) Analyze in multiple checkpoints failure and different recovery strategy for
network efficiency.

(2) With the decreasing cost of network devices, using new medium to enhance
recovery efficiency becomes feasible.

(3) By constructing a multi-level failure tolerance network to improve the per-
formance of the system is a future research direction.
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